企业邮箱 杂志订阅
文章搜索
杂志栏目
杂志栏目-> 商业银行
大数据推动商业银行零售业务转型升级
作者: 陆岷峰 虞鹏飞 / 时间: 2015年 3月号

伴随金融自由化与金融创新不断深入,全球金融业的发展出现了深刻的变化,国内外商业银行发展理念和经营模式不断调整。在商业银行诸多业务中,零售业务是与个人和家庭联系最为密切的银行业务,由于具有庞大的客户资源以及强大的价值创造能力,越来越受到商业银行的重视,并逐渐成为商业银行最具发展活力的业务领域。

零售银行业务集中体现了商业银行以客户为中心的经营战略,银行依托现代化管理手段为个人、家庭以及中小企业提供综合性、一体化的金融服务。中国银行业零售业务以20世纪90年代中期储蓄卡的推广为标志,正式进入高速发展阶段,逐渐形成一套完善的零售业务体系,并成为中国银行业未来发展的必然趋势。对于国内商业银行来说,当前正处于零售银行业务发展的“黄金时代”。然而,现阶段各家商业银行零售业务的营销手段存在同质化问题,产品结构单一化现象严重,导致巨大的成本投入稀释了银行收益。在信息技术、网络技术和互联网金融高速发展的现在,各商业银行逐渐开始重视运用大数据分析与挖掘技术服务于零售业务的转型升级。

 

大数据推动零售业务转型升级

商业银行同业竞争的日趋激烈以及互联网金融的巨大冲击“倒逼”传统银行加速转型,零售转型成为银行转型的核心任务。大数据体量巨大、种类繁多、价值密度低以及处理速度快的特点与银行零售业务的发展高度契合。因此,作为未来银行竞争核心的零售业务,其转型升级的关键在于大数据分析与挖掘技术的深度应用。

大数据推动零售负债业务转型

零售负债业务是商业银行最主要的资金来源之一,是其赖以生存的基础。储蓄存款则是零售负债业务中最重要的组成部分。然而,随着利率市场化的不断推进,央行逐渐放宽存款利率上限,各大商业银行争相提高存款利率,零售负债市场竞争愈加激烈,商业银行传统的零售负债业务面临着巨大的转型压力。

储蓄存款业务从本质上来说就是对客户数据库系统的分析与应用。业务人员只有在全面了解客户的家庭、收入、兴趣偏好以及风险偏好等信息之后,才能准确把握住客户的存款需求。大数据分析技术不仅能对20%的结构化数据进行精确分析,还能有效运用80%的非结构化数据,提高数据分析的准确度。大数据不仅可以从内部掌握客户的属性数据、账户信息以及交易信息,还能通过外部网络了解客户的行为数据和渠道偏好等社会化数据,掌握客户的真实需求,并在此基础上设定产品,激发客户的存款兴趣。并通过多种渠道对产品的市场推广度、受众覆盖率、盈利能力以及用户的反应情况进行深度挖掘,在此基础上进行产品的优化升级,发掘新的价值增长点。

…………

全文请参照《银行家》杂志2015年第3期)

 

(作者单位:江苏银行,南京财经大学金融学院)